Experimental nuclear chart

4.1. Experimental nuclear chart#

In this tutorial, you will learn how to extract data from the experimental nuclear chart.


Import the libraries that will be employed in this tutorial.

# Import numpy
import numpy as np
import matplotlib.pyplot as plt
# Import nucleardatapy package
import nucleardatapy as nuda
# Enable inline plotting for Jupyter Notebook
%matplotlib inline

You can simply print out the properties of the nuda’s function that we will use:

# Explore the nucleardatapy module to find the correct attribute
print(dir(nuda.nuc.setupBEExp))
['D3n', 'D3p', 'S2n', 'S2p', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'isotones', 'isotopes', 'print_outputs', 'select', 'select_year']

Get the full list of tables:

print('tables:',nuda.nuc.be_exp_tables()[0])
tables: ['AME']

Get the versions associated to this table:

print('versions:',nuda.nuc.be_exp_versions(table = 'AME')[0])
versions: ['2020', '2016', '2012']

Extract data from a given table and version:

mas = nuda.nuc.setupBEExp( table = 'AME', version = '2020' )
print('number of nuclei:',mas.nbNuc)
Oldest discovery is from:  1896
Most recent discovery is from:  2020
dist: [  20.   19.  118.  170.  253.  620.  510.  888.  632.  394.  310.  252.
   72. 1569.    0.    0.    0.    0.    0.    0.]
number of nuclei: 5827

print outputs:

mas.print_outputs( )
- Print output:
   table:   AME
   version: 2020
   ref:     F.G. Kondev, M. Wang, W.J. Huang, S. Naimi, and G. Audi, Chin. Phys. C45, 030001 (2021)
   label:   AME-2020
   note:    write here notes about this table.
   Z: [  0   2   2   4   5   6   7   6   7   7   8   8   9   9  10  10   9   9
   6  13  12   9   9  15  14  13   9  17  16  15  13  18  16  13  20  18
  15  21  18  15  19  16  22  19  13  21  17  23  19  22  18  22  16  22
  17  22  16  23  18  24  20  27  23  27  24  20  26  20  27  22  27  24
  19  26  30  27  21  27  32  26  21  27  32  25  31  25  32  28  23  30
  25  31  26  32  26  31  26  31  27  32  35  29  36  31  37  31  37  32
  36  31  26  32  26  33  27  34  27  35  28  34  28  36  29  36  42  35
  41  35  39  32  38  30  37  42  37  42  37  43  36  41  35  42  35  41
  44  39  43  35  41  45  37  42  34  39  45  35  41  47  37  44  48  38
  43  49  39  43  48  41  46  38  43  48  41  46  39  46  39  47  40  46
  39  46  38  45  52  43  49  41  49  41  46  51  45  51  45  50  43  49
  42  48  54  46  51  44  49  54  47  51  57  47  51  43  49  53  44  49
  52  45  50  53  46  50  53  45  49  53  56  47  50  54  45  50  53  44
  48  51  55  45  49  51  57  47  50  54  59  48  51  54  46  49  52  57
  48  51  53  58  48  51  56  62  52  57  62  52  56  61  50  55  60  50
  56  61  53  57  62  54  59  50  56  61  52  60  64  55  60  66  59  64
  54  61  65  58  64  54  61  65  54  62  67  57  65  54  63  67  58  65
  69  61  67  56  65  69  60  67  70  60  64  69  60  65  70  58  64  69
  60  66  72  62  67  73  64  69  58  65  70  60  67  73  62  67  73  63
  69  75  65  70  76  67  73  62  69  77  67  70  77  67  72  63  69  75
  65  69  77  68  73  64  70  77  68  72  79  69  72  79  69  73  65  70
  72  77  69  72  77  69  72  77  70  72  75  80  72  76  82  73  74  79
  69  73  75  71  73  76  80  73  76  81  74  79  70  75  81  73  77  82
  74  79  84  75  78  82  73  80  83  76  79  83  76  81  83  77  80  84
  76  80  83  76  80  83  75  79  84  77  81  84  77  82  86  78  82  86
  80  83  75  81  85  77  82  86  79  83  86  78  83  87  79  82  85  78
  81  84  79  82  84  88  82  85  79  84  78  84  89  84  89  82  86  80
  84  88  83  86  90  84  87  81  86  88  83  89  83  89  82  90  85  91
  88  86  83  93  90  88  85  95  93  91  89  87  85  93  91  90  90  90
  88  94  92  92  97  94  93  92  96  94  93  98  95  93  97  95 100  96
 101  99  96  96 102 101  99  98 102 102 101  97 103 101 104 101 100 105
 104 103 103 104 104 104 102 105 106 106 107 105 108 106 109 108 109 112
 108 111 112 113 112 114 116]
   A: [  1   5   7   8   9  10  11  12  13  14  15  16  17  18  19  20  21  22
  23  23  24  25  26  26  27  28  29  29  30  31  32  32  33  34  34  35
  36  36  37  38  38  39  39  40  41  41  42  42  43  43  44  44  45  45
  46  46  47  47  48  48  49  49  50  50  51  52  52  53  53  54  54  55
  56  56  56  57  58  58  58  59  60  60  60  61  61  62  62  63  64  64
  65  65  66  66  67  67  68  68  69  69  69  70  70  71  71  72  72  73
  73  74  75  75  76  76  77  77  78  78  79  79  80  80  81  81  81  82
  82  83  83  84  84  85  85  85  86  86  87  87  88  88  89  89  90  90
  90  91  91  92  92  92  93  93  94  94  94  95  95  95  96  96  96  97
  97  97  98  98  98  99  99 100 100 100 101 101 102 102 103 103 104 104
 105 105 106 106 106 107 107 108 108 109 109 109 110 110 111 111 112 112
 113 113 113 114 114 115 115 115 116 116 116 117 117 118 118 118 119 119
 119 120 120 120 121 121 121 122 122 122 122 123 123 123 124 124 124 125
 125 125 125 126 126 126 126 127 127 127 127 128 128 128 129 129 129 129
 130 130 130 130 131 131 131 131 132 132 132 133 133 133 134 134 134 135
 135 135 136 136 136 137 137 138 138 138 139 139 139 140 140 140 141 141
 142 142 142 143 143 144 144 144 145 145 145 146 146 147 147 147 148 148
 148 149 149 150 150 150 151 151 151 152 152 152 153 153 153 154 154 154
 155 155 155 156 156 156 157 157 158 158 158 159 159 159 160 160 160 161
 161 161 162 162 162 163 163 164 164 164 165 165 165 166 166 167 167 167
 168 168 168 169 169 170 170 170 171 171 171 172 172 172 173 173 174 174
 174 174 175 175 175 176 176 176 177 177 177 177 178 178 178 179 179 179
 180 180 180 181 181 181 181 182 182 182 183 183 184 184 184 185 185 185
 186 186 186 187 187 187 188 188 188 189 189 189 190 190 190 191 191 191
 192 192 192 193 193 193 194 194 194 195 195 195 196 196 196 197 197 197
 198 198 199 199 199 200 200 200 201 201 201 202 202 202 203 203 203 204
 204 204 205 205 205 205 206 206 207 207 208 208 208 209 209 210 210 211
 211 211 212 212 212 213 213 214 214 214 215 215 216 216 217 217 218 218
 219 220 221 221 222 223 224 224 225 226 227 228 229 229 230 231 232 233
 234 234 235 236 236 237 238 239 239 240 241 241 242 243 243 244 244 245
 245 246 247 248 248 249 250 251 251 252 253 254 254 255 255 256 257 257
 258 259 260 261 262 263 264 265 266 267 268 270 271 273 274 276 277 278
 280 281 283 285 288 290 293]

Discovery year:

print('Discovery year:',mas.nucYear)
Discovery year: [1932 1920 1932 ... 2030 2030 2030]

Select year:

selectYear = mas.select_year( year_min=1897, year_max=1940, state = 'gs' )
print('A:',selectYear.sel_A)
print('Z:',selectYear.sel_Z)
print('N:',selectYear.sel_N)
number of nuclei(Tot): 475
number of nuclei(Sta): 462
number of nuclei(Sel): 462
A: [np.int64(1), np.int64(1), np.int64(2), np.int64(3), np.int64(3), np.int64(4), np.int64(5), np.int64(6), np.int64(6), np.int64(7), np.int64(7), np.int64(8), np.int64(8), np.int64(9), np.int64(10), np.int64(10), np.int64(11), np.int64(11), np.int64(12), np.int64(12), np.int64(13), np.int64(13), np.int64(14), np.int64(14), np.int64(15), np.int64(15), np.int64(16), np.int64(16), np.int64(17), np.int64(17), np.int64(18), np.int64(18), np.int64(19), np.int64(19), np.int64(19), np.int64(20), np.int64(20), np.int64(21), np.int64(22), np.int64(22), np.int64(23), np.int64(23), np.int64(23), np.int64(24), np.int64(24), np.int64(25), np.int64(26), np.int64(26), np.int64(27), np.int64(27), np.int64(27), np.int64(28), np.int64(28), np.int64(29), np.int64(29), np.int64(30), np.int64(30), np.int64(31), np.int64(31), np.int64(32), np.int64(32), np.int64(33), np.int64(34), np.int64(34), np.int64(35), np.int64(35), np.int64(36), np.int64(36), np.int64(37), np.int64(38), np.int64(38), np.int64(39), np.int64(40), np.int64(40), np.int64(40), np.int64(41), np.int64(41), np.int64(41), np.int64(42), np.int64(42), np.int64(43), np.int64(43), np.int64(44), np.int64(44), np.int64(45), np.int64(46), np.int64(46), np.int64(46), np.int64(47), np.int64(48), np.int64(48), np.int64(48), np.int64(48), np.int64(49), np.int64(50), np.int64(50), np.int64(51), np.int64(51), np.int64(52), np.int64(52), np.int64(52), np.int64(53), np.int64(53), np.int64(54), np.int64(54), np.int64(54), np.int64(55), np.int64(55), np.int64(55), np.int64(56), np.int64(56), np.int64(57), np.int64(57), np.int64(58), np.int64(58), np.int64(59), np.int64(59), np.int64(60), np.int64(61), np.int64(61), np.int64(62), np.int64(62), np.int64(63), np.int64(63), np.int64(64), np.int64(64), np.int64(64), np.int64(65), np.int64(65), np.int64(65), np.int64(66), np.int64(66), np.int64(66), np.int64(67), np.int64(67), np.int64(68), np.int64(68), np.int64(69), np.int64(69), np.int64(69), np.int64(70), np.int64(70), np.int64(70), np.int64(71), np.int64(71), np.int64(72), np.int64(72), np.int64(72), np.int64(73), np.int64(74), np.int64(74), np.int64(74), np.int64(75), np.int64(75), np.int64(76), np.int64(76), np.int64(76), np.int64(77), np.int64(77), np.int64(78), np.int64(78), np.int64(78), np.int64(78), np.int64(79), np.int64(80), np.int64(80), np.int64(80), np.int64(81), np.int64(82), np.int64(82), np.int64(82), np.int64(83), np.int64(83), np.int64(83), np.int64(84), np.int64(84), np.int64(85), np.int64(86), np.int64(86), np.int64(87), np.int64(87), np.int64(88), np.int64(88), np.int64(88), np.int64(89), np.int64(89), np.int64(90), np.int64(90), np.int64(91), np.int64(92), np.int64(92), np.int64(92), np.int64(93), np.int64(94), np.int64(94), np.int64(94), np.int64(95), np.int64(96), np.int64(96), np.int64(96), np.int64(97), np.int64(98), np.int64(99), np.int64(99), np.int64(100), np.int64(100), np.int64(101), np.int64(102), np.int64(102), np.int64(103), np.int64(104), np.int64(104), np.int64(104), np.int64(105), np.int64(105), np.int64(106), np.int64(106), np.int64(106), np.int64(107), np.int64(108), np.int64(108), np.int64(108), np.int64(109), np.int64(109), np.int64(110), np.int64(110), np.int64(110), np.int64(110), np.int64(111), np.int64(111), np.int64(111), np.int64(112), np.int64(112), np.int64(112), np.int64(113), np.int64(113), np.int64(113), np.int64(114), np.int64(114), np.int64(114), np.int64(115), np.int64(115), np.int64(115), np.int64(116), np.int64(116), np.int64(116), np.int64(117), np.int64(117), np.int64(117), np.int64(118), np.int64(119), np.int64(120), np.int64(120), np.int64(120), np.int64(121), np.int64(121), np.int64(122), np.int64(122), np.int64(122), np.int64(123), np.int64(123), np.int64(124), np.int64(124), np.int64(124), np.int64(124), np.int64(124), np.int64(125), np.int64(125), np.int64(126), np.int64(126), np.int64(126), np.int64(127), np.int64(127), np.int64(127), np.int64(128), np.int64(128), np.int64(128), np.int64(129), np.int64(129), np.int64(129), np.int64(130), np.int64(130), np.int64(130), np.int64(130), np.int64(131), np.int64(131), np.int64(131), np.int64(132), np.int64(132), np.int64(133), np.int64(134), np.int64(134), np.int64(135), np.int64(136), np.int64(136), np.int64(136), np.int64(137), np.int64(138), np.int64(138), np.int64(139), np.int64(139), np.int64(139), np.int64(140), np.int64(140), np.int64(140), np.int64(140), np.int64(141), np.int64(142), np.int64(142), np.int64(142), np.int64(143), np.int64(144), np.int64(144), np.int64(145), np.int64(146), np.int64(147), np.int64(148), np.int64(148), np.int64(149), np.int64(149), np.int64(150), np.int64(150), np.int64(151), np.int64(151), np.int64(152), np.int64(152), np.int64(152), np.int64(153), np.int64(153), np.int64(154), np.int64(154), np.int64(155), np.int64(156), np.int64(157), np.int64(158), np.int64(158), np.int64(159), np.int64(160), np.int64(160), np.int64(161), np.int64(162), np.int64(162), np.int64(163), np.int64(164), np.int64(164), np.int64(164), np.int64(165), np.int64(165), np.int64(166), np.int64(166), np.int64(167), np.int64(168), np.int64(168), np.int64(169), np.int64(170), np.int64(170), np.int64(170), np.int64(171), np.int64(171), np.int64(172), np.int64(173), np.int64(174), np.int64(174), np.int64(175), np.int64(176), np.int64(176), np.int64(176), np.int64(177), np.int64(178), np.int64(179), np.int64(180), np.int64(180), np.int64(180), np.int64(181), np.int64(181), np.int64(182), np.int64(182), np.int64(183), np.int64(184), np.int64(184), np.int64(185), np.int64(186), np.int64(186), np.int64(186), np.int64(187), np.int64(187), np.int64(188), np.int64(188), np.int64(189), np.int64(190), np.int64(191), np.int64(192), np.int64(192), np.int64(192), np.int64(193), np.int64(194), np.int64(194), np.int64(195), np.int64(196), np.int64(196), np.int64(196), np.int64(197), np.int64(197), np.int64(198), np.int64(198), np.int64(198), np.int64(199), np.int64(199), np.int64(199), np.int64(200), np.int64(201), np.int64(202), np.int64(203), np.int64(204), np.int64(204), np.int64(205), np.int64(206), np.int64(206), np.int64(207), np.int64(207), np.int64(208), np.int64(208), np.int64(209), np.int64(210), np.int64(210), np.int64(210), np.int64(210), np.int64(211), np.int64(211), np.int64(211), np.int64(212), np.int64(212), np.int64(212), np.int64(214), np.int64(214), np.int64(214), np.int64(215), np.int64(216), np.int64(218), np.int64(219), np.int64(220), np.int64(222), np.int64(223), np.int64(223), np.int64(224), np.int64(226), np.int64(227), np.int64(227), np.int64(228), np.int64(228), np.int64(228), np.int64(230), np.int64(231), np.int64(231), np.int64(232), np.int64(233), np.int64(233), np.int64(234), np.int64(234), np.int64(234), np.int64(235), np.int64(239)]
Z: [np.int64(0), np.int64(1), np.int64(1), np.int64(1), np.int64(2), np.int64(2), np.int64(2), np.int64(2), np.int64(3), np.int64(3), np.int64(4), np.int64(3), np.int64(4), np.int64(4), np.int64(4), np.int64(5), np.int64(5), np.int64(6), np.int64(5), np.int64(6), np.int64(6), np.int64(7), np.int64(6), np.int64(7), np.int64(7), np.int64(8), np.int64(7), np.int64(8), np.int64(8), np.int64(9), np.int64(8), np.int64(9), np.int64(8), np.int64(9), np.int64(10), np.int64(9), np.int64(10), np.int64(10), np.int64(10), np.int64(11), np.int64(10), np.int64(11), np.int64(12), np.int64(11), np.int64(12), np.int64(12), np.int64(12), np.int64(13), np.int64(12), np.int64(13), np.int64(14), np.int64(13), np.int64(14), np.int64(13), np.int64(14), np.int64(14), np.int64(15), np.int64(14), np.int64(15), np.int64(15), np.int64(16), np.int64(16), np.int64(16), np.int64(17), np.int64(16), np.int64(17), np.int64(16), np.int64(18), np.int64(17), np.int64(18), np.int64(19), np.int64(19), np.int64(18), np.int64(19), np.int64(20), np.int64(18), np.int64(19), np.int64(20), np.int64(19), np.int64(20), np.int64(20), np.int64(21), np.int64(20), np.int64(21), np.int64(21), np.int64(20), np.int64(21), np.int64(22), np.int64(22), np.int64(20), np.int64(21), np.int64(22), np.int64(23), np.int64(22), np.int64(22), np.int64(24), np.int64(23), np.int64(25), np.int64(23), np.int64(24), np.int64(25), np.int64(24), np.int64(26), np.int64(24), np.int64(25), np.int64(26), np.int64(25), np.int64(26), np.int64(27), np.int64(25), np.int64(26), np.int64(26), np.int64(28), np.int64(26), np.int64(28), np.int64(26), np.int64(27), np.int64(28), np.int64(28), np.int64(29), np.int64(28), np.int64(29), np.int64(29), np.int64(30), np.int64(28), np.int64(29), np.int64(30), np.int64(29), np.int64(30), np.int64(31), np.int64(29), np.int64(30), np.int64(31), np.int64(30), np.int64(31), np.int64(30), np.int64(31), np.int64(30), np.int64(31), np.int64(32), np.int64(30), np.int64(31), np.int64(32), np.int64(31), np.int64(33), np.int64(31), np.int64(32), np.int64(33), np.int64(32), np.int64(32), np.int64(33), np.int64(34), np.int64(32), np.int64(33), np.int64(32), np.int64(33), np.int64(34), np.int64(32), np.int64(34), np.int64(33), np.int64(34), np.int64(35), np.int64(36), np.int64(35), np.int64(34), np.int64(35), np.int64(36), np.int64(35), np.int64(34), np.int64(35), np.int64(36), np.int64(34), np.int64(35), np.int64(36), np.int64(36), np.int64(38), np.int64(37), np.int64(36), np.int64(38), np.int64(37), np.int64(38), np.int64(36), np.int64(37), np.int64(38), np.int64(38), np.int64(39), np.int64(39), np.int64(40), np.int64(40), np.int64(40), np.int64(41), np.int64(42), np.int64(41), np.int64(40), np.int64(41), np.int64(42), np.int64(42), np.int64(40), np.int64(42), np.int64(44), np.int64(42), np.int64(42), np.int64(43), np.int64(44), np.int64(42), np.int64(44), np.int64(44), np.int64(44), np.int64(46), np.int64(45), np.int64(44), np.int64(45), np.int64(46), np.int64(46), np.int64(47), np.int64(46), np.int64(47), np.int64(48), np.int64(47), np.int64(46), np.int64(47), np.int64(48), np.int64(46), np.int64(47), np.int64(46), np.int64(47), np.int64(48), np.int64(49), np.int64(46), np.int64(47), np.int64(48), np.int64(47), np.int64(48), np.int64(50), np.int64(48), np.int64(49), np.int64(50), np.int64(48), np.int64(49), np.int64(50), np.int64(48), np.int64(49), np.int64(50), np.int64(48), np.int64(49), np.int64(50), np.int64(48), np.int64(49), np.int64(50), np.int64(50), np.int64(50), np.int64(50), np.int64(51), np.int64(52), np.int64(51), np.int64(52), np.int64(50), np.int64(51), np.int64(52), np.int64(51), np.int64(52), np.int64(50), np.int64(51), np.int64(52), np.int64(53), np.int64(54), np.int64(50), np.int64(52), np.int64(52), np.int64(53), np.int64(54), np.int64(51), np.int64(52), np.int64(53), np.int64(52), np.int64(53), np.int64(54), np.int64(51), np.int64(52), np.int64(54), np.int64(52), np.int64(53), np.int64(54), np.int64(56), np.int64(52), np.int64(53), np.int64(54), np.int64(54), np.int64(56), np.int64(55), np.int64(54), np.int64(56), np.int64(56), np.int64(54), np.int64(56), np.int64(58), np.int64(56), np.int64(56), np.int64(58), np.int64(55), np.int64(56), np.int64(57), np.int64(56), np.int64(57), np.int64(58), np.int64(59), np.int64(59), np.int64(58), np.int64(59), np.int64(60), np.int64(60), np.int64(60), np.int64(62), np.int64(60), np.int64(60), np.int64(62), np.int64(60), np.int64(62), np.int64(60), np.int64(62), np.int64(60), np.int64(62), np.int64(60), np.int64(63), np.int64(62), np.int64(63), np.int64(64), np.int64(62), np.int64(63), np.int64(62), np.int64(64), np.int64(64), np.int64(64), np.int64(64), np.int64(64), np.int64(66), np.int64(65), np.int64(64), np.int64(66), np.int64(66), np.int64(66), np.int64(68), np.int64(66), np.int64(66), np.int64(67), np.int64(68), np.int64(66), np.int64(67), np.int64(67), np.int64(68), np.int64(68), np.int64(68), np.int64(70), np.int64(69), np.int64(68), np.int64(69), np.int64(70), np.int64(68), np.int64(70), np.int64(70), np.int64(70), np.int64(70), np.int64(72), np.int64(71), np.int64(70), np.int64(71), np.int64(72), np.int64(72), np.int64(72), np.int64(72), np.int64(72), np.int64(73), np.int64(74), np.int64(72), np.int64(73), np.int64(73), np.int64(74), np.int64(74), np.int64(74), np.int64(76), np.int64(75), np.int64(74), np.int64(75), np.int64(76), np.int64(75), np.int64(76), np.int64(75), np.int64(76), np.int64(76), np.int64(76), np.int64(77), np.int64(76), np.int64(77), np.int64(78), np.int64(77), np.int64(77), np.int64(78), np.int64(78), np.int64(78), np.int64(79), np.int64(80), np.int64(78), np.int64(79), np.int64(78), np.int64(79), np.int64(80), np.int64(78), np.int64(79), np.int64(80), np.int64(80), np.int64(80), np.int64(80), np.int64(81), np.int64(80), np.int64(82), np.int64(81), np.int64(81), np.int64(82), np.int64(81), np.int64(82), np.int64(81), np.int64(82), np.int64(83), np.int64(81), np.int64(82), np.int64(83), np.int64(84), np.int64(82), np.int64(83), np.int64(84), np.int64(82), np.int64(83), np.int64(84), np.int64(82), np.int64(83), np.int64(84), np.int64(84), np.int64(84), np.int64(84), np.int64(86), np.int64(86), np.int64(86), np.int64(87), np.int64(88), np.int64(88), np.int64(88), np.int64(89), np.int64(90), np.int64(88), np.int64(89), np.int64(90), np.int64(90), np.int64(90), np.int64(91), np.int64(90), np.int64(90), np.int64(91), np.int64(90), np.int64(91), np.int64(92), np.int64(92), np.int64(92)]
N: [np.int64(1), np.int64(0), np.int64(1), np.int64(2), np.int64(1), np.int64(2), np.int64(3), np.int64(4), np.int64(3), np.int64(4), np.int64(3), np.int64(5), np.int64(4), np.int64(5), np.int64(6), np.int64(5), np.int64(6), np.int64(5), np.int64(7), np.int64(6), np.int64(7), np.int64(6), np.int64(8), np.int64(7), np.int64(8), np.int64(7), np.int64(9), np.int64(8), np.int64(9), np.int64(8), np.int64(10), np.int64(9), np.int64(11), np.int64(10), np.int64(9), np.int64(11), np.int64(10), np.int64(11), np.int64(12), np.int64(11), np.int64(13), np.int64(12), np.int64(11), np.int64(13), np.int64(12), np.int64(13), np.int64(14), np.int64(13), np.int64(15), np.int64(14), np.int64(13), np.int64(15), np.int64(14), np.int64(16), np.int64(15), np.int64(16), np.int64(15), np.int64(17), np.int64(16), np.int64(17), np.int64(16), np.int64(17), np.int64(18), np.int64(17), np.int64(19), np.int64(18), np.int64(20), np.int64(18), np.int64(20), np.int64(20), np.int64(19), np.int64(20), np.int64(22), np.int64(21), np.int64(20), np.int64(23), np.int64(22), np.int64(21), np.int64(23), np.int64(22), np.int64(23), np.int64(22), np.int64(24), np.int64(23), np.int64(24), np.int64(26), np.int64(25), np.int64(24), np.int64(25), np.int64(28), np.int64(27), np.int64(26), np.int64(25), np.int64(27), np.int64(28), np.int64(26), np.int64(28), np.int64(26), np.int64(29), np.int64(28), np.int64(27), np.int64(29), np.int64(27), np.int64(30), np.int64(29), np.int64(28), np.int64(30), np.int64(29), np.int64(28), np.int64(31), np.int64(30), np.int64(31), np.int64(29), np.int64(32), np.int64(30), np.int64(33), np.int64(32), np.int64(32), np.int64(33), np.int64(32), np.int64(34), np.int64(33), np.int64(34), np.int64(33), np.int64(36), np.int64(35), np.int64(34), np.int64(36), np.int64(35), np.int64(34), np.int64(37), np.int64(36), np.int64(35), np.int64(37), np.int64(36), np.int64(38), np.int64(37), np.int64(39), np.int64(38), np.int64(37), np.int64(40), np.int64(39), np.int64(38), np.int64(40), np.int64(38), np.int64(41), np.int64(40), np.int64(39), np.int64(41), np.int64(42), np.int64(41), np.int64(40), np.int64(43), np.int64(42), np.int64(44), np.int64(43), np.int64(42), np.int64(45), np.int64(43), np.int64(45), np.int64(44), np.int64(43), np.int64(42), np.int64(44), np.int64(46), np.int64(45), np.int64(44), np.int64(46), np.int64(48), np.int64(47), np.int64(46), np.int64(49), np.int64(48), np.int64(47), np.int64(48), np.int64(46), np.int64(48), np.int64(50), np.int64(48), np.int64(50), np.int64(49), np.int64(52), np.int64(51), np.int64(50), np.int64(51), np.int64(50), np.int64(51), np.int64(50), np.int64(51), np.int64(52), np.int64(51), np.int64(50), np.int64(52), np.int64(54), np.int64(53), np.int64(52), np.int64(53), np.int64(56), np.int64(54), np.int64(52), np.int64(55), np.int64(56), np.int64(56), np.int64(55), np.int64(58), np.int64(56), np.int64(57), np.int64(58), np.int64(56), np.int64(58), np.int64(60), np.int64(59), np.int64(58), np.int64(59), np.int64(58), np.int64(60), np.int64(59), np.int64(58), np.int64(60), np.int64(62), np.int64(61), np.int64(60), np.int64(63), np.int64(62), np.int64(64), np.int64(63), np.int64(62), np.int64(61), np.int64(65), np.int64(64), np.int64(63), np.int64(65), np.int64(64), np.int64(62), np.int64(65), np.int64(64), np.int64(63), np.int64(66), np.int64(65), np.int64(64), np.int64(67), np.int64(66), np.int64(65), np.int64(68), np.int64(67), np.int64(66), np.int64(69), np.int64(68), np.int64(67), np.int64(68), np.int64(69), np.int64(70), np.int64(69), np.int64(68), np.int64(70), np.int64(69), np.int64(72), np.int64(71), np.int64(70), np.int64(72), np.int64(71), np.int64(74), np.int64(73), np.int64(72), np.int64(71), np.int64(70), np.int64(75), np.int64(73), np.int64(74), np.int64(73), np.int64(72), np.int64(76), np.int64(75), np.int64(74), np.int64(76), np.int64(75), np.int64(74), np.int64(78), np.int64(77), np.int64(75), np.int64(78), np.int64(77), np.int64(76), np.int64(74), np.int64(79), np.int64(78), np.int64(77), np.int64(78), np.int64(76), np.int64(78), np.int64(80), np.int64(78), np.int64(79), np.int64(82), np.int64(80), np.int64(78), np.int64(81), np.int64(82), np.int64(80), np.int64(84), np.int64(83), np.int64(82), np.int64(84), np.int64(83), np.int64(82), np.int64(81), np.int64(82), np.int64(84), np.int64(83), np.int64(82), np.int64(83), np.int64(84), np.int64(82), np.int64(85), np.int64(86), np.int64(85), np.int64(88), np.int64(86), np.int64(89), np.int64(87), np.int64(90), np.int64(88), np.int64(91), np.int64(88), np.int64(90), np.int64(89), np.int64(88), np.int64(91), np.int64(90), np.int64(92), np.int64(90), np.int64(91), np.int64(92), np.int64(93), np.int64(94), np.int64(92), np.int64(94), np.int64(96), np.int64(94), np.int64(95), np.int64(96), np.int64(94), np.int64(97), np.int64(98), np.int64(97), np.int64(96), np.int64(99), np.int64(98), np.int64(99), np.int64(98), np.int64(99), np.int64(100), np.int64(98), np.int64(100), np.int64(102), np.int64(101), np.int64(100), np.int64(103), np.int64(101), np.int64(102), np.int64(103), np.int64(104), np.int64(102), np.int64(104), np.int64(106), np.int64(105), np.int64(104), np.int64(105), np.int64(106), np.int64(107), np.int64(108), np.int64(107), np.int64(106), np.int64(109), np.int64(108), np.int64(109), np.int64(108), np.int64(109), np.int64(110), np.int64(108), np.int64(110), np.int64(112), np.int64(111), np.int64(110), np.int64(112), np.int64(111), np.int64(113), np.int64(112), np.int64(113), np.int64(114), np.int64(114), np.int64(116), np.int64(115), np.int64(114), np.int64(116), np.int64(117), np.int64(116), np.int64(117), np.int64(118), np.int64(117), np.int64(116), np.int64(119), np.int64(118), np.int64(120), np.int64(119), np.int64(118), np.int64(121), np.int64(120), np.int64(119), np.int64(120), np.int64(121), np.int64(122), np.int64(122), np.int64(124), np.int64(122), np.int64(124), np.int64(125), np.int64(124), np.int64(126), np.int64(125), np.int64(127), np.int64(126), np.int64(126), np.int64(129), np.int64(128), np.int64(127), np.int64(126), np.int64(129), np.int64(128), np.int64(127), np.int64(130), np.int64(129), np.int64(128), np.int64(132), np.int64(131), np.int64(130), np.int64(131), np.int64(132), np.int64(134), np.int64(133), np.int64(134), np.int64(136), np.int64(136), np.int64(135), np.int64(136), np.int64(138), np.int64(138), np.int64(137), np.int64(140), np.int64(139), np.int64(138), np.int64(140), np.int64(141), np.int64(140), np.int64(142), np.int64(143), np.int64(142), np.int64(144), np.int64(143), np.int64(142), np.int64(143), np.int64(147)]

Extract isotopes:

Select ground-states:

sel = mas.select( state= 'gs', interp = 'n', nucleus = 'unstable' )
number of nuclei(Tot): 5573
number of nuclei(Sta): 2297
number of nuclei(Sel): 2297
isotopes = sel.isotopes( Zmin=50, Zmax=54 )
print('Z:',isotopes.isotopes_Z)
print('Nmin:',isotopes.isotopes_Nmin)
print('Nmax:',isotopes.isotopes_Nmax)
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In[10], line 1
----> 1 isotopes = sel.isotopes( Zmin=50, Zmax=54 )
      2 print('Z:',isotopes.isotopes_Z)
      3 print('Nmin:',isotopes.isotopes_Nmin)

TypeError: setupBEExp.isotopes() got an unexpected keyword argument 'Zmin'

Theoretical mass tables (for models predicting driplines)

theo_tables, theo_tables_lower = nuda.nuc.be_theo_tables()
print('theo_tables:',theo_tables)
theo_tables: ['1988-MJ', '1995-DZ', '1995-ETFSI', '1995-FRDM', '2005-KTUY', '2007-HFB14', '2010-WS*', '2010-HFB21', '2011-WS3', '2013-HFB22', '2013-HFB23', '2013-HFB24', '2013-HFB25', '2013-HFB26', '2021-BSkG1', '2022-BSkG2', '2023-BSkG3', '2025-BSkG4']

Plot nuclear chart:

nuda.fig.nuc_setupBEExp_chart_lt_fig( None,  table = 'AME', version = '2020', theo_tables = theo_tables )
Plot name: None
Table: AME
Oldest discovery is from:  1896
Most recent discovery is from:  2020
dist: [  20.   19.  118.  170.  253.  620.  510.  888.  632.  394.  310.  252.
   72. 1569.    0.    0.    0.    0.    0.    0.]
number of nuclei(Tot): 1414
number of nuclei(Sta): 1071
number of nuclei(Sel): 1071
Oldest discovery is from:  1896
Most recent discovery is from:  2020
dist: [  20.   19.  118.  170.  253.  620.  510.  888.  632.  394.  310.  252.
   72. 1569.    0.    0.    0.    0.    0.    0.]
number of nuclei(Tot): 2663
number of nuclei(Sta): 1135
number of nuclei(Sel): 1135
Oldest discovery is from:  1896
Most recent discovery is from:  2020
dist: [  20.   19.  118.  170.  253.  620.  510.  888.  632.  394.  310.  252.
   72. 1569.    0.    0.    0.    0.    0.    0.]
number of nuclei(Tot): 1495
number of nuclei(Sta): 91
number of nuclei(Sel): 91
Oldest discovery is from:  1896
Most recent discovery is from:  2020
dist: [  20.   19.  118.  170.  253.  620.  510.  888.  632.  394.  310.  252.
   72. 1569.    0.    0.    0.    0.    0.    0.]
number of nuclei(Tot): 5573
number of nuclei(Sta): 2297
number of nuclei(Sel): 2297
Oldest discovery is from:  1896
Most recent discovery is from:  2020
dist: [  20.   19.  118.  170.  253.  620.  510.  888.  632.  394.  310.  252.
   72. 1569.    0.    0.    0.    0.    0.    0.]
number of nuclei(Tot): 254
number of nuclei(Sta): 253
number of nuclei(Sel): 253
../../_images/6779c05cec5c0fc0c448410df545d57238259ee58525e48790a8a8f2468105a7.png