Experimental hyper-nuclei with 1 Lambda

5.1. Experimental hyper-nuclei with 1 Lambda#

In this tutorial, you will learn how to get experimental data associated to hyper-nuclei.


Import the libraries that will be employed in this tutorial.

# Import numpy
import numpy as np
# Import matplotlib
import matplotlib.pyplot as plt
# Import nucleardatapy package
import nucleardatapy as nuda

You can simply print out the properties of the nuda’s function that we will use:

# Explore the nucleardatapy module to find the correct attribute
print(dir(nuda.hnuc.setupRE1LExp))
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'print_latex', 'print_outputs']

Set the experimental tables for 1-Lambda hyper-nuclei:

tables, tables_lower = nuda.hnuc.re1L_exp_tables()
print('tables:',tables)
tables: ['2016-1L-GHM']

Select a table:

table1L = '2016-1L-GHM'

Instantiate hnuc:

hnuc = nuda.hnuc.setupRE1LExp( table = table1L )
hnuc.print_outputs()
- Print output:
   table: 2016-1L-GHM
   ref: Gal, Hungerford, and Millener, Rev. Mod. Phys. 88, 1 (2016)
   label: ['GHM-2016 Emul1', 'GHM-2016 Emul1', 'GHM-2016 Emul1', 'GHM-2016 Emul1', 'GHM-2016 Emul1', "GHM-2016 (e,e'K)", 'GHM-2016 Emul', 'GHM-2016 Emul1', 'GHM-2016 Emul1', 'GHM-2016 Emul1', 'GHM-2016 Emul1', 'GHM-2016 Emul1', 'GHM-2016 Emul1', "GHM-2016 (e,e'K)", 'GHM-2016 Emul1', 'GHM-2016 Emul1', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 Emul1', 'GHM-2016 Emul1', 'GHM-2016 Emul1', "GHM-2016 (e,e'K)", "GHM-2016 (e,e'K)", 'GHM-2016 ($\\pi$,K)', 'GHM-2016 Emul1', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 Emul', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 Emul1', 'GHM-2016 Emul', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 Emul', 'GHM-2016 Emul1', "GHM-2016 (e,e'K)", "GHM-2016 (e,e'K)", 'GHM-2016 ($\\pi$,K)', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 (K,$\\pi$)', 'GHM-2016 (K,$\\pi$)', 'GHM-2016 (K,$\\pi$)', 'GHM-2016 (K,$\\pi$)', 'GHM-2016 (K,$\\pi$)', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 ($\\pi$,K)', "GHM-2016 (e,e'K)", 'GHM-2016 ($\\pi$,K)', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 ($\\pi$,K)', 'GHM-2016 ($\\pi$,K)']
   note: write here notes about this table.
   A: [  3   4   4   5   6   7   8   7   8   9   7   8   9  10  10   9  10  10
  11  12  12  12  12  12  12  12  13  13  13  13  13  14  16  16  16  16
  28  28  28  32  32  32  40  40  51  51  51  52  89  89  89  89  89 139
 139 139 139 139 208 208 208 208 208]
   Z: [ 1  1  2  2  2  2  2  3  3  3  4  4  4  4  4  5  5  5  5  5  5  5  6  6
  6  6  6  6  6  6  6  6  7  7  8  8 14 14 14 16 16 16 20 20 23 23 23 23
 39 39 39 39 39 57 57 57 57 57 82 82 82 82 82]
   N: [  1   2   1   2   3   4   5   3   4   5   2   3   4   5   5   3   4   4
   5   6   6   6   5   5   5   5   6   6   6   6   6   7   8   8   7   7
  13  13  13  15  15  15  19  19  27  27  27  28  49  49  49  49  49  81
  81  81  81  81 125 125 125 125 125]
   S: [-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1]
   Q: [ 1  1  2  2  2  2  2  3  3  3  4  4  4  4  4  5  5  5  5  5  5  5  6  6
  6  6  6  6  6  6  6  6  7  7  8  8 14 14 14 16 16 16 20 20 23 23 23 23
 39 39 39 39 39 57 57 57 57 57 82 82 82 82 82]
 symb: ['H', 'H', 'He', 'He', 'He', 'He', 'He', 'Li', 'Li', 'Li', 'Be', 'Be', 'Be', 'Be', 'Be', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'N', 'N', 'O', 'O', 'Si', 'Si', 'Si', 'S', 'S', 'S', 'Ca', 'Ca', 'V', 'V', 'V', 'V', 'Y', 'Y', 'Y', 'Y', 'Y', 'La', 'La', 'La', 'La', 'La', 'Pb', 'Pb', 'Pb', 'Pb', 'Pb']
 ell: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0
 1 2 0 1 2 1 2 0 1 2 0 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4]
  re: [ 0.13  2.04  2.39  3.12  4.18  5.55  7.16  5.58  6.8   8.5   5.16  6.84
  6.71  8.55  9.11  8.29  8.7   8.89 10.24 11.37 11.52  0.54 11.36 10.8
  0.36  0.14 12.   11.69 11.69  1.1   0.8  12.17 13.76  2.84 13.    2.5
 17.2   7.6  -1.   17.5   8.2  -1.   11.    1.   21.5  13.4   5.1  21.8
 23.6  17.7  10.9   3.7  -3.8  25.1  21.   14.9   8.6   2.1  26.9  22.5
 17.4  12.3   7.2 ]
 re_err: [0.05 0.04 0.03 0.2  0.1  0.15 0.7  0.03 0.03 0.12 0.08 0.03 0.04 0.13
 0.22 0.18 0.3  0.12 0.05 0.06 0.02 0.04 0.2  0.18 0.2  0.05 0.2  0.12
 0.12 0.2  0.3  0.33 0.16 0.18 0.2  0.2  0.2  0.2  0.5  0.5  0.5  0.5
 0.5  0.5  0.6  0.6  0.6  0.3  0.5  0.6  0.6  0.6  1.   1.2  0.6  0.6
 0.6  0.6  0.8  0.6  0.7  0.6  0.6 ]
print('  Z:',hnuc.Z)
print('  A:',hnuc.A)
print(' ch:',hnuc.ch)
print('lre:',hnuc.lre)
print('lre_err:',hnuc.lre_err)
  Z: [ 1  1  2  2  2  2  2  3  3  3  4  4  4  4  4  5  5  5  5  5  5  5  6  6
  6  6  6  6  6  6  6  6  7  7  8  8 14 14 14 16 16 16 20 20 23 23 23 23
 39 39 39 39 39 57 57 57 57 57 82 82 82 82 82]
  A: [  3   4   4   5   6   7   8   7   8   9   7   8   9  10  10   9  10  10
  11  12  12  12  12  12  12  12  13  13  13  13  13  14  16  16  16  16
  28  28  28  32  32  32  40  40  51  51  51  52  89  89  89  89  89 139
 139 139 139 139 208 208 208 208 208]
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
Cell In[6], line 3
      1 print('  Z:',hnuc.Z)
      2 print('  A:',hnuc.A)
----> 3 print(' ch:',hnuc.ch)
      4 print('lre:',hnuc.lre)
      5 print('lre_err:',hnuc.lre_err)

AttributeError: 'setupRE1LExp' object has no attribute 'ch'