5.2. Experimental hyper-nuclei with 2 Lambda#
In this tutorial, you will learn how to get experimental data associated to hyper-nuclei.
Import the libraries that will be employed in this tutorial.
# Import numpy
import numpy as np
# Import matplotlib
import matplotlib.pyplot as plt
# Import nucleardatapy package
import nucleardatapy as nuda
You can simply print out the properties of the nuda’s function that we will use:
# Explore the nucleardatapy module to find the correct attribute
print(dir(nuda.hnuc.setupRE2LExp))
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'print_latex', 'print_outputs']
Set the experimental tables for 1-Lambda hyper-nuclei:
tables, tables_lower = nuda.hnuc.re2L_exp_tables()
print('tables:',tables)
tables: ['2013-2L-Ahn']
Select a table:
table2L = '2013-2L-Ahn'
Instantiate hnuc
:
hnuc = nuda.hnuc.setupRE2LExp( table = table2L )
hnuc.print_outputs()
- Print output:
table: 2013-2L-Ahn
ref: J. K. Ahn, H. Akikawa, S. Aoki, K. Arai, Phys. Rev. C 88, 014003 (2013)
key: JKAhn:2013
label: []
note: write here notes about this table.
A: [6]
Z: [2]
N: [2]
S: [-2]
Q: [2]
symb: ['He']
be: [6.91]
be_err: [0.16]
dbe: [0.67]
dbe_err: [0.17]